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1. Let us consider one~dimensional, nonstationary adiabatic motions
of a perfect electroconducting gas with cylindrical and plane waves. The
magnetic field B is directed perpendicularly to the particle motion traject-
ories (along the axis of symmetry in the cylindrical case or along the tangent
to concentric circles with a center on this axis). The conductivity of the
gas is considered to be infinite; we neglect the viscosity and heat conductiomm.
Under the assumptions made, the motion equations are
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where .3 o2 opo nLE2 4 is the magnetic field intensit
at = 3% or . Bn } g 3

v==213 n=0 for the cylindrical magnetic field, n =1 for a field
directed along the axis of symmetry (v = 2); the rest of the notation is as
customary. Since equations (1) do not contain any dimensional constants,
the motion will be self-similar [1] if only two dimensional constants with
independent dimensionalities enter into the initial and boundary conditions
of the problem.

L. I. Sedov [1] developed the theory of unsteady, self-similar motion
of a fluid and gas in the absence of a magnetic field. let us use the L, I.
Sedov notation and terminology.

let there be two constants a and b with independent dimensional-
ities among the defining parameters, where [a] = Mmxre » [b] = o,

Let us introduce the nondimsnsional variables

(1)

- X - a L] a ! = a = r
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The nondimensional functions V, R,P ,# depend only on the one non-

dimensional variable A because of self-similarity. The partial differential
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equation system (1) is equivalent to the following system of ordinary differ-
ential equations:

(2) 1[(V-6)V+_G_£.%‘f.)_'.],_v2+V+(k+1)?ﬁ+]’_2(l-n)fC

(3) K(V-5)§-+V']=s+(k—v+3)v

- '
(L) )\(V-G)%q‘ww]=s+2+(k+1-7rv)v

- ! 8 + 2 k-1
() XJ(V-G)ﬁ+V']= > +[2 +(1-v)n]V

If the constants , & are related to s, k, v, n by means of the
relations '
2@y = k) =« (2« v +4v)(6 +8 +2) ; 2-qv=-21-v)n =0

then the system (2) - (5) has the particular solution
VeAg L =B ; p=Ch; J¢ =Dr
where B and D are arbitrary positive constants;

A 2 . g kB+D) -20-n)p
2 =v 4+ 79y °? A(A -1)

The dimensional velocity for this solution depends linearly on the
coordinate r . More general solutions of this type are analyzed in [2,3].
Using the conservation laws and the methods of dimensional analysis
[1,4], it can be shown that equations (3) - (5) have two algebraic integrals:
1) Adiabatic integral [1,5]
2-@r -1)s+6 [k+1-7(k+3)] _ [2+v0r-1)]s+2(k+3-v)
W A b 1

(6) % - ROV - 6)]

2) Frozen integral
2-5-5(k+2n43) _ (k+5)u-(v-k-3) [2-8-6(k+2n+3)]

(7 i@ﬁa = [R(V - 8)] 2 N 2u g

where ?Gl and 2

, are arbitrary constants; u = s + 6(k + 3 - v) .

Hence, the solution of all the self-similar problems reduces to the
integration of a system of two ordinary equations.

If s42-6(v-1l=k)=0, the following energy integral exists

for the system (2) - (5)
2
(8) x”+2[(? v - (v - o T + =Ly s )] - const

The problem reduces to the solution of one equation in this case.

Shockwaves can arise in the gas motion. The conditions on the shocks,



which are consequences of the conservation lawé, can be written thus for the
self-similar motions under consideration:
{R(v -8 =0
7V -6)%}=0
(9) ROV -6V +R +F#}=0

2 .
{é(v - 5)(%E§z;-ij +-%- +-%%) + (P +J¥)§} = 0

Here, it has been taken into account that there is the following dependence
&r
¢ = -2 for the shockwave velocity ¢ , where r,_, 1is the shockwave radius.

The b:aces denote the difference in the values ofzthe quantities on both sides
of the surface of discontinuity. For a flow with shockwaves, (9) are the
boundary conditions to find the functioms V(1), R(A),2P()\),F(A) .

2. The following self-similar problems can be mentioned, whose solution
reduces to the integration of the system (2) - (5).

1) The problem of the motion of a conducting gas according to given
initial data (Cauchy problem). It follows from the self-similarity require-
ment that the initial distributions (for t = 0) will have the form:

3 tose )
Vo =aqb T 5 P = azab r
P, = a3ab T 5 hy= 9P,

where a, (i =1,...,ll) are assigned dimensional constants. The initial data
can undergo a discontinuity at r = 0 in the plane case.

The simplest example of this problem is the problem of the disintegr-
ation of an arbitrary discontinuity when the following constants are given for
t =03 .

3 P =D} Q=013 heh for r {0
V=V, P=Dp,; =0 h = h2 for r >0
the velocities vy and v, are directed oppositely, their differences are

large in absolute value. Shockwaves, which move with a constant velocity and

V=V1

have a constant intensity, are propagated on both sides as a result of the
disintegration of the arbitrary discontinuity.

Using the conditions (9), all the characteristics of the motion which
arises can be calculated. A motion of such a kind can occur, for example, in
the collision of cosmic gaseous masses. A detailed solution of this problem



for h =0 has been given in [7].

2) The problem of the motion of a plane or cylindrical (conducting)
piston in a gas. At the initial instant, vy
stants and the piston starts to move with the constant velocity U . The
problem is self-similar.

Let us consider the solution for the plane piston. A shockwave with

the constant velocity c¢ 1is propagated over the gas in front of the piston.

=0, Pys Py and h1 are con-

In the region of the motion beyond the shockwave front, v = v, = U; p= Py >
P = 92 s h = h2 are constants.

Using the conditions on the shockwave (9), the dependence of ¢; p, ¢, h
on the piston velocity U and o,, Pq> h1 can be found. Shown on figure 1

is the dependence of ;E- on —— for 7= 1.4k and = 0 and 51 -1,
5 ¥P; 2nyHl %1 P 1
where a4 "ot o -
1 0

3) The problem of a strong explosion (electric discharge). At time

t = 0 , there occurs in the gas at rest an
instantaneous liberation of the finite
energy Eo along a line, i.e., an explosion
occurs; Eo is calculated per unit length.
This explosion can be considered as a high
intensity ¢lectrical discharge in a gas,
originating along a line. The initial
density and the magnetic field intensity

Figure 1

are variable:
P = AFT 5 By =By ® <3

The influence of the initial pressure p; can be neglected for a
strong explosion [@1. Let us note that the mentioned value h1 for any con-
stant p, satisfies the equilibrium equation 3=(p +h) + 22 =0 for a
cylindrical field.

The energy integral (8) exists in this problem, i.e., its solution
reduces to the integration of one ordinary first order differential equation,

By analogy with [1], formulations of selfesimilar problems of deton-
ation and combustion in a gas in the presence of a magnetic field are also
possible. For v = 2 , formulations can be given of self-similar problems
with magnetic lines of force having the shape of screw lines.

V. A, Steklov Math. Inst. AN USSR March 28, 1958
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